THE MANIFESTATION OF THE α -EFFECT IN ³⁵Cl-NQR SPECTRA OF RR'R'Si(CH_{3-n}Cl_n), (n = 1-3)

M.G. VORONKOV^a, V.P. FESHIN^a, L.S. ROMANENKO^a, J. POLA^b and V. CHVALOVSKÝ^b

^a Institute of Organic Chemistry, Siberian Division of Academy of Sciences of the USSR, 664 033 Irkutsk, USSR and ^b Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 165 02 Prague 6 - Suchdol 2

Received January 19th, 1976

The ³⁵Cl-NQR frequencies for the silanes $RR'R''Si(CH_{3-n}Cl_n)$ depend linearly on the sum of Taft σ^* constants of the groups R, R', R''. The inductive effect of these groups is transmitted to the chlorine atom to a lesser extent in $RR'R''MCH_2Cl$ (M = Si) than in the analogous compounds with M = C, Ge, Sn reported earlier. The α -effect plays a role in all the members of the above series, decreasing with increasing *n*.

A number of experimental data on the reactivity and IR, NMR and NQR spectra of organic compounds of silicon, germanium and tin show that the properties of the compounds with the M—C—X arrangement (M = Si, Ge, Sn; X = halogen, O, N *etc.*) are not in harmony with the electronegativity of the atoms M (ref.^{1,2}). This discrepancy was explained by the intramolecular interaction between M and X which was called the α -effect³⁻⁵. The α -effect in the compounds RR'R"MCH₂Cl (M = Si, Ge, Sn) has been detected by NQR spectroscopy as an increase in the ³⁵Cl-NQR frequency of the organometallic compounds (ref.^{1,4}) (M = Si, Ge, Sn) relative to their carbon analogues (M = C) (ref.^{1,4}).

The aim of this work was to examine whether an increase in the ³⁵Cl-NQR frequency of RR'R"MCH₂Cl observed when going from M = C to M = Si is common for a wide range of the R, R', R" substituents.

EXPERIMENTAL

Model compounds. All the compounds $RR'R'SiCH_2Cl$ were prepared by reported procedures^{6,7}, except $C_6H_5O(CH_3)_2SiCH_2Cl$ and $(SCN)_3SiCHCl$.

Dimethyl(phenoxy)chloromethylsilane was prepared by the reaction of dimethyl(chloro)chloromethylsilane with stoichiometric amount of phenol in the presence of pyridine in dry diethyl ether and was separated by rectification as a fraction boiling at 132°C/27 Torr; n_D^{20} 1.5017; 58% yield. For C₉H₁₃ClOSi (200.8) calculated: 17.50% Cl; found: 17.66% Cl.

Tris(isothiocyanato)chloromethylsilane was prepared by the reaction of trichloro(chlormethyl)silane with silver thiocyanate. Both compounds (0.5 mol) were mixed in heptane (150 ml) and

^{*} Part CXLIV in the series Organosilicon Compounds; Part CXLIII: This Journal 41, 2714 (1976).

α -Effect in ³⁵Cl-NQR Spectra of RR'R'Si(CH_{3-n}Cl_n), (n = 1-3)

shaked in a sealed reaction vessel for 2 days. The liquid layer was separated by filtration, the salts were extracted with benzene and the combined extract and filtrate was distilled (all the operations were carried out under nitrogen). Tris(isothiocyanato)chloromethylsilane was obtained by rectification as a fraction boiling at 155° C/8 Torr; $n_{\rm D}^{20}$ 1.6430; nearly quantitative yield. For C₄H₂ClN₃Si (248.8) calculated: 19.31% C, 0.81% H, 14.25% Cl; found: 18.82% C, 0.99% H, 15.10% Cl. The purity of all the compounds was checked by gas-liquid chromatography and their physical constants agreed with reported data^{6,7}.

³⁵Cl-NQR Spectroscopy. ³⁵Cl-NQR spectra of studied compounds were measured at 77 K with NQR spectrometer, model ISSCH-1-12 (Institute of Radiotechnics and Electronics, Academy of Sciences of the U.S.S.R.).

TABLE I

The ³⁵Cl-NQR Frequencies of the Compounds $RR'R''SiCH_2Cl$ at 77 K and $\sum \sigma^*$ Values for Groups R, R', R''

Comp.	R	R′	R″	v ⁷⁷ , MHz	$\sum \sigma^{* \ a}$
1	SCN	SCN	SCN	37.145	9·54 ^b
2	F	F	F	36.886	9.3
3 ^c	Cl	Cl	Cl	36.786	8.7
4 ^c	Cl	Cl	CH ₃	36.108	5.8
5	F	F	CH ₃	36.045	
			·	36.000	6.2
6	Cl	Cl	C_6H_5	36.024	6.4
7	OCOCH ₃	OCOCH ₃	OCOCH ₃	35.975	6·72 ^b
8	Cl	CH ₂ Cl	CH ₃	35-248	3.95
			-	17.570	
9	OC_2H_5	OC_2H_5	OC_2H_5	35.122	4.11
10	OC_6H_5	CH ₃	CH ₃	34.886	2.38
II ^d	Cl	CH ₃	CH ₃	34.827	2.9
12	F	CH ₃	CH ₃	34.658	3.1
13	OC_2H_5	OC_2H_5	CH ₃	34.583	2.74
14	OCOCH ₃	CH ₃	CH ₃	34.537	$2 \cdot 24^b$
15	C ₆ H ₅	C_6H_5	C_6H_5	34.715	1.8
16	OC_2H_5	CH ₃	CH ₃	34.691	1.37
17^d	CH ₂ Cl	CH ₃	CH ₃	34.519	1.05
18 ^d	н	CH ₃	CH ₃	34.192	0.49
19 ^d	CH ₃	CH ₃	CH ₃	34.320	0.0
20^{c}	$C_2 H_5$	$C_2 H_5$	CH ₃	34.592	-0.5
21	OSi(CH ₃) ₃	CH,	CH	34.355	

^a Taft σ^* constants have been calculated from the relation $\sigma^* = 6.23\sigma_I$ where σ_I constants were determined⁸ from pK's of α -substituted *p*-toluic acids. ^b For the correlation equation see⁹. ^c The same value of frequency was found in¹⁰. ^d cf. ref.⁴.

Collection Czechoslov, Chem. Commun. [Vol. 41] [1976]

2719

RESULTS AND DISCUSSION

The ³⁵Cl-NQR frequencies for RR'R"MCH₂Cl (M = C, Si, Table I) depend linearly on the sum of Taft σ^* constants of the R, R', R" groups (Table II). Deviation of CH₃(C₂H₅)₂SiCH₂Cl from the correlation line for RR'R"SiCH₂Cl may be consistent with the fact that the compounds RR'R"SiCH₂Cl where R, R' and R" are hydrogen or alkyl groups form separate linear correlation. This was also observed with some series of organic compounds (*e.g.* RCl) (ref.¹¹). The NQR frequencies increase with increasing $\Sigma \sigma^*$ R, R', R" value (Fig. 1). The correlation lines corresponding to the relationship $v^{77} = v_0 + \varrho \Sigma \sigma^*$ for RR'R"MCH₂Cl (M = C and Si) bisect one another at about $\Sigma \sigma^* \sim 6$ (Fig. 1). The ³⁵Cl NQR frequencies for the organosilicon compounds (M = Si) are up to $\Sigma \sigma^* \sim 6$ higher and for $\Sigma \sigma^* > 6$ lower than the frequencies for their carbon analogues (M = C). The latter situation could be expected on the basis of the electronegativities of C and Si atoms or of the inductive effects of RR'R"Cand RR'R"Si-groups.

The fact that the lines in the v^{77} vs $\sum \sigma_{R, R', R''}^*$ plot for RR'R''MCH₂Cl (M = = C, Si) bisect one another differentiates α -carbofunctional organosilicon chlorides from α -carbofunctional organogermanium and organotin chlorides, the ³⁵ Cl NQR frequency of which is always higher than that of the respective carbon derivatives⁴. This arises from the fact that the inductive effect is transferred through --CH₂Ge= and --CH₂Sn= groups very similarly as through --CH₂C= groups. (ref.⁴).

The ρ value of the equation $v^{77} = v_0 + \rho \sum \sigma^*$ for RR'R"SiCH₂Cl (Table II) is somewhat lower than the value for RR'R"SiCl ($\rho = 0.404$, ref.¹¹). This can be expected as a result of the insulating effect of the methylene group. This effect is, however, significantly decreased compared to the carbon derivatives. This can be seen from the ratio of the values obtained from the equations $v^{77} = v_0 + \rho \sum \sigma^*$ for RR'R"SiCH₂Cl and RR'R"SiCl (ref.¹²) (z = 0.73) and from the ratio of the values obtained from the equations $v^{77} = v_0 + \rho \sum \sigma^*$ for RR'R"CCH₂Cl and RR'R"CCl (ref.¹²) (z = 0.53).

TABLE II

Parameters of Correlation Equations $v^{77} = v_0 + \rho \sum \sigma^*$ for R R'R"M(CH_{3-n}Cl_n) (n = 1-3; M = C, Si)

14		M = C				M =	= Si	
n	v _o	Q	r	S	- v ₀	Q	r	s
1	32.039	0.594	0:964	0.223	34.053	0.308	0.981	0.188
2	35.062	0.409	0.988	0.206	35.279	0.279	0.999	0.016
3	37.529	0.408	0.987	0.193	37.586	0.166	0.950	0.211

Collection Czechoslov, Chem. Commun. [Vol. 41] [1976]

2720

The ³⁵Cl-NQR frequencies for the series RR'R"SiCHCl₂ and RR'R"SiCCl₃ can be also satisfactorily correlated with $\sum \sigma_{R,R',R''}^*$ Taft values (Table II). Having at present at our disposal only limited number of such data (Tables III and IV), we must, however, admit that these correlations are less accurate and may serve only for preliminary information. The slopes of the v^{77} vs $\sum \sigma_{R,R',R''}^*$ plots for the compounds RR'R"SiCH_{3-n}Cl_n decrease with increasing *n*, in agreement with the sequence of the slopes when going from RR'R"CCl to RCCl₃ via RRCCl₂ (ref.¹¹). As one can expect, the inductive effect transfer from the substituents attached to the silicon decreases when going from RR'R"SiCH₂Cl to RR'R"SiCHCl₂. In the case of RR'R"SiCHCl₂ and RR'R"SiCCl₃ the inductive effect is transferred to about the

TABLE III				
³⁵ Cl-NOR Frequencies of RR'R"SiCHCl ₂	at 77°K (v^{77}) an	nd $\Sigma \sigma^*$ Values for	r Groups R, R', I	R″

n	R, R′, R″	ν^{77} , MHz $\sum \sigma^*$	n	R, R′, R″	v ⁷⁷ , MHz	$\sum \sigma^*$
1 <i>ª</i>	CI,CI,CI	38.160 8.7	3°	Cl,Cl,CH ₃	37.084	5.8
		37.240			36.752	
		19·963			18.748	
		19.871	4 ^b	CH ₃ ,CH ₃ ,CH ₃	35.539	0.0
		19·699			35.379	
2 ^b	Cl,Cl,C ₆ H ₅	37.060 6.4			34.903	
			5	CH ₃ ,CH ₃ ,Cl	37.083	2.9
					36.745	

^{*a*} The earlier reported⁹ NQR frequencies $v^{77} = 38.171$, 37.240 and 19.75 MHz. ^{*b*} cf. ref.¹⁰. ^{*c*} The earlier reported^{9,10} NQR frequencies $v^{77} = 36.76$ and 18.74 MHz.

TABLE IV

Average ³⁵Cl-NQR Frequencies for R R' R"SiCCl₃ at 77°K (ν^{77}) and $\sum \sigma^*$ Values for Groups R, R', R"

n	R, R', R"	v ⁷⁷ , MHz	$\sum \sigma^*$
1	CI, CI, CI	39.02	8.7
2	Cl, Cl, CH ₂ C ₆ H ₅	38.88	6.0
3	$Cl, Cl, C_6H,$	38-55	6.4
4	OC_2H_5 , OC_2H_5 , CCl_3	38-29	5.4
5	C_2H_5, C_2H_5, C_2H_5	37.54	-0.3

same extent. This can be explained by saturation effect¹. The transmission of the inductive effect of the groups R to the chlorine atom of $RR'R''SiCH_{3-n}Cl_n$ is always significantly lower compared to the respective carbon derivatives, $RR'R''CCH_{3-n}Cl_n$ (Fig. 1, Table II). The lines of the v^{77} vs $\sum \sigma_{R,R',R''}^*$ plot for both $RR'R''MCHCl_2$ and $RR'R''MCCl_3$ (M = C, Si) bisect one another at the lower $\sum \sigma^*$ values than those for the compounds $RR'R''MCH_2Cl$ (M = C, Si).

The point on $\sum \sigma^*$ scale at which the α -effect begins to be clearly manifested thus shifts toward lower $\sum \sigma^*$ values for RR'R"SiCH_{3-n}Cl_n when *n* increases.

FIG. 1

The ³⁵Cl-NQR Frequency (ν^{77}) vs $\sum \sigma^*$ Plot for RR'R"CCH₂Cl (a), RR'R"SiCH₂Cl (b), RR'R"SiCHCl₂ (c), RR'R"CCHCl₂ (d), RR'R"SiCCl₃ (e) and RR'R"CCCl₃ (f)

Correlation lines have been derived from the appropriate equations, parameters of which are included in Table II. The numbering of the points corresponds to the numbering of compounds in Tables I, III, and IV. For compounds $RR'R''CCHCl_2$ and $RR'R''CCCl_3$ the points are numbered as follows:

Correlation d. R, R', R" = F, F, F (1); Cl, Cl, Cl (2); Cl, Cl, CCl₃ (3); H, Cl, Cl (4); H, Cl, CHCl₂ (5); H, H, CCl₃ (6); H, H, CF₃ (7); H, OC₂H₅, OC₂H₅ (8); H, H, CH₂Br (9); H, H, H (10); H, H, C₂H₅ (11).

Correlation f. R, R', R'' = Cl, Cl, CHCl₂ (1); CCl₃, CCl₃, CCl₃ (2); Cl, Cl, Cl₃ (3); Cl, Cl, Cl (4); H, Cl, CCl₃ (5); H, Cl, CH₂Cl (6); H, H, Cl (7); H, OH, OH (8); H, OH, OC_2H_5 (9); H, H, CHCl₂ (10); H, H, CH₂Cl (11); H, H, H (12); H, H, C₂H₅ (13).

REFERENCES

- 1. Feshin V. P., Voronkov M. G.: Dokl. Akad. Nauk SSSR 209, 400 (1973).
- Chvalovský V.: Plenary Lecture Presented on IVth Int. Symp. on Organosilicon Chemistry, Moscow 1975.
- 3. Steward O. W., Pierce O. R.: J. Amer. Chem. Soc. 83, 4932 (1961).
- 4. Voronkov M. G., Feshin V. P., Mironov V. F., Mikhailants S. A., Gar T. K.: Zh. Obshch. Khim. 41, 2211 (1971).
- 5. Pola J., Schraml J., Chvalovský V.: This Journal 38, 3158 (1973).
- 6. Bažant V., Chvalovský V., Rathouský J.: Organosilicon Compounds, Vol. 2. Published by Nakladatelství ČSAV, Prague 1965.
- 7. Bažant V., Chvalovský V., Rathouský J.: Organosilicon Compounds, Vol. 4. Publication of the Institute of Chemical Process Fundamentals of the Czech. Acad. Sci., Prague 1973.
- 8. Zhdanov Yu. A., Minkin V. I.: Korrelatsionnyi Analiz v Organicheskoi Khimii. Izd. Rostovskogo Universiteta, Rostov 1966.
- Voronkov M. G., Feshin V. P., Volkov A. N., Khubyakova A. N., Berestennikov N. I., Nikitin P. A.: Teor. Eksp. Khim. 10, 538 (1974).
- 10. Biryukov I. P., Voronkov M. G., Safin I. A.: Izv. Akad. Nauk Latv. SSR, Ser: Khim. 1966, 638.
- 11. Biryukov I. P., Voronkov M. G.: Izv. Akad. Nauk Latv. SSR, 10, 38 (1966).
- 12. Semin G. K., Babushkina T. A., Jakobson G. G.: Primenenie Yadernogo Kvadrupolnogo Rezonansa v Khimii, Chapter 6. Khimia, Moscow 1972.

Translated by J. Hetflejš.