THE MANIFESTATION OF THE α-EFFECT IN ${ }^{35} \mathbf{C I}$-NQR SPECTRA OF RR'R'Si($\left.\mathbf{C H}_{3-n} \mathrm{Cl}_{\mathrm{n}}\right),(\mathbf{n}=\mathbf{1}-3)$

M.G.Voronkov ${ }^{a}$, V.P.Feshin ${ }^{a}$, L.S.Romanenko ${ }^{a}$, J.Pola ${ }^{b}$ and V.ChValovsk \dot{Y}^{b}
${ }^{a}$ Institute of Organic Chemistry, Siberian Division of Academy of Sciences of the USSR, 664033 Irkutsk, USSR and
${ }^{b}$ Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 16502 Prague 6-Suchdol 2

Received January 19th, 1976

Abstract

The ${ }^{35} \mathrm{Cl}-\mathrm{NQR}$ frequencies for the silanes $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{Si}\left(\mathrm{CH}_{3-n} \mathrm{Cl}_{n}\right)$ depend linearly on the sum of Taft σ^{*} constants of the groups $\mathbf{R}, \mathbf{R}^{\prime}, \mathbf{R}^{\prime \prime}$. The inductive effect of these groups is transmitted to the chlorine atom to a lesser extent in $R^{\prime} R^{\prime \prime} \mathrm{MCH}_{2} \mathrm{Cl}(\mathrm{M}=\mathrm{Si})$ than in the analogous compounds with $\mathrm{M}=\mathrm{C}, \mathrm{Ge}, \mathrm{Sn}$ reported earlier. The α-effect plays a role in all the members of the above series, decreasing with increasing n.

A number of experimental data on the reactivity and IR, NMR and NQR spectra of organic compounds of silicon, germanium and tin show that the properties of the compounds with the $\mathrm{M}-\mathrm{C}-\mathrm{X}$ arrangement $(\mathrm{M}=\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn} ; \mathrm{X}=$ halogen, O, N etc.) are not in harmony with the electronegativity of the atoms M (ref. ${ }^{1,2}$). This discrepancy was explained by the intramolecular interaction between M and X which was called the α-effect ${ }^{3-5}$. The α-effect in the compounds $R^{\prime} R^{\prime \prime} \mathrm{MCH}_{2} \mathrm{Cl}(\mathrm{M}=\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn})$ has been detected by NQR spectroscopy as an increase in the ${ }^{35} \mathrm{Cl}-\mathrm{NQR}$ frequency of the organometallic compounds (ref. $\left.{ }^{1,4}\right)(\mathrm{M}=\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn})$ relative to their carbon analogues $(M=C)$ (ref. ${ }^{1,4}$).

The aim of this work was to examine whether an increase in the ${ }^{35} \mathrm{Cl}-\mathrm{NQR}$ frequency of $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{MCH}_{2} \mathrm{Cl}$ observed when going from $\mathrm{M}=\mathrm{C}$ to $\mathrm{M}=\mathrm{Si}$ is common for a wide range of the $R, R^{\prime}, R^{\prime \prime}$ substituents.

EXPERIMENTAL

Model compounds. All the compounds $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{SiCH}_{2} \mathrm{Cl}$ were prepared by reported procedures ${ }^{6,7}$, except $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCH}_{2} \mathrm{Cl}$ and $(\mathrm{SCN})_{3} \mathrm{SiCHCl}$.

Dimethyl(phenoxy)chloromethylsilane was prepared by the reaction of dimethyl(chloro)chloromethylsilane with stoichiometric amount of phenol in the presence of pyridine in dry diethyl ether and was separated by rectification as a fraction boiling at $132^{\circ} \mathrm{C} / 27 \mathrm{Torr} ; n_{\mathrm{D}}^{20}{ }_{1.5017 \text {; }}$ 58% yield. For $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{ClOSi}(200 \cdot 8)$ calculated: $17.50 \% \mathrm{Cl}$; found: $17.66 \% \mathrm{Cl}$.

Tris(isothiocyanato)chloromethylsilane was prepared by the reaction of trichloro(chlormethyl)silane with silver thiocyanate. Both compounds (0.5 mol) were mixed in heptane (150 ml) and

* Part CXLIV in the series Organosilicon Compounds; Part CXLIII: This Journal 41, 2714 (1976).
shaked in a sealed reaction vessel for 2 days. The liquid layer was separated by filtration, the salts were extracted with benzene and the combined extract and filtrate was distilled (all the operations were carried out under nitrogen). Tris(isothiocyanato)chloromethylsilane was obtained by rectification as a fraction boiling at $155^{\circ} \mathrm{C} / 8 \mathrm{Torr} ; n_{\mathrm{D}}^{20} 1 \cdot 6430$; nearly quantitative yield. For $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{ClN}_{3} \mathrm{Si}(248.8)$ calculated: $19.31 \% \mathrm{C}, 0.81 \% \mathrm{H}, 14.25 \% \mathrm{Cl}$; found: $18.82 \% \mathrm{C}$, $0.99 \% \mathrm{H}, 15 \cdot 10 \% \mathrm{Cl}$. The purity of all the compounds was checked by gas-liquid chromatography and their physical constants agreed with reported data ${ }^{6,7}$.
${ }^{35} \mathrm{Cl}-\mathrm{NQR}$ Spectroscopy. ${ }^{35} \mathrm{Cl}-\mathrm{NQR}$ spectra of studied compounds were measured at 77 K with NQR spectrometer, model ISSCH-1-12 (Institute of Radiotechnics and Electronics, Academy of Sciences of the U.S.S.R.).

Table I
The ${ }^{35} \mathrm{Cl}-\mathrm{NQR}$ Frequencies of the Compounds $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{SiCH}_{2} \mathrm{Cl}$ at 77 K and $\sum \sigma^{*}$ Values for Groups R, R', R"

Comp.	R	\mathbf{R}^{\prime}	$\mathrm{R}^{\prime \prime}$	v^{77}, MHz	$\sum \sigma^{*}{ }^{a}$
1	SCN	SCN	SCN	$37 \cdot 145$	$9.54{ }^{\text {b }}$
2	F	F	F	36.886	$9 \cdot 3$
$3^{\text {c }}$	Cl	Cl	Cl	36.786	8.7
4^{c}	Cl	Cl	CH_{3}	$36 \cdot 108$	$5 \cdot 8$
5	F	F	CH_{3}	36.045	
				36.000	$6 \cdot 2$
6	Cl	Cl	$\mathrm{C}_{6} \mathrm{H}_{5}$	36.024	$6 \cdot 4$
7	OCOCH_{3}	OCOCH_{3}	OCOCH_{3}	35.975	$6 \cdot 72^{\text {b }}$
	Cl	$\mathrm{CH}_{2} \mathrm{Cl}$	CH_{3}	35.248	3.95
				17.570	
9	$\mathrm{OC}_{2} \mathrm{H}_{5}$	$\mathrm{OC}_{2} \mathrm{H}_{5}$	$\mathrm{OC}_{2} \mathrm{H}_{5}$	$35 \cdot 122$	
10	$\mathrm{OC}_{6} \mathrm{H}_{5}$	CH_{3}	CH_{3}	$34 \cdot 886$	$2 \cdot 38$
$11^{\text {d }}$	Cl	CH_{3}	CH_{3}	$34 \cdot 827$	$2 \cdot 9$
12	F	CH_{3}	CH_{3}	$34 \cdot 658$	3.1
13	$\mathrm{OC}_{2} \mathrm{H}_{5}$	$\mathrm{OC}_{2} \mathrm{H}_{5}$	CH_{3}	34.583	2.74
14	OCOCH_{3}	CH_{3}	CH_{3}	34.537	$2 \cdot 24^{\text {b }}$
15	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	34.715	1.8
16	$\mathrm{OC}_{2} \mathrm{H}_{5}$	CH_{3}	CH_{3}	34.691	$1 \cdot 37$
$17^{\text {d }}$	$\mathrm{CH}_{2} \mathrm{Cl}$	CH_{3}	CH_{3}	34.519	1.05
18^{d}	$\mathrm{H}^{\text {che }}$	CH_{3}	CH_{3}	$34 \cdot 192$	0.49
19^{d}	CH_{3}	CH_{3}	CH_{3}	$34 \cdot 320$	$0 \cdot 0$
$20^{\text {c }}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}	34.592 34.355	-0.2
21	$\mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}$	CH_{3}	CH_{3}	$34 \cdot 355$	

[^0]
RESULTS AND DISCUSSION

The ${ }^{35} \mathrm{Cl}-\mathrm{NQR}$ frequencies for $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{MCH}_{2} \mathrm{Cl}(\mathrm{M}=\mathrm{C}, \mathrm{Si}$, Table I) depend linearly on the sum of Taft σ^{*} constants of the $\mathrm{R}, \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}$ groups (Table II). Deviation of $\mathrm{CH}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SiCH}_{2} \mathrm{Cl}$ from the correlation line for $\mathrm{R}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{SiCH}_{2} \mathrm{Cl}$ may be consistent with the fact that the compounds $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{SiCH}_{2} \mathrm{Cl}$ where $\mathrm{R}, \mathrm{R}^{\prime}$ and $\mathrm{R}^{\prime \prime}$ are hydrogen or alkyl groups form separate linear correlation. This was also observed with some series of organic compounds (e.g. RCl) (ref. ${ }^{11}$). The NQR frequencies increase with increasing $\sum \sigma^{*} \mathrm{R}, \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}$ value (Fig. 1). The correlation lines corresponding to the relationship $v^{77}=v_{0}+\varrho \sum \sigma^{*}$ for $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{MCH}_{2} \mathrm{Cl}(\mathrm{M}=\mathrm{C}$ and Si$)$ bisect one another at about $\sum \sigma^{*} \sim 6$ (Fig. 1). The ${ }^{35} \mathrm{Cl}$ NQR frequencies for the organosilicon compounds $(\mathrm{M}=\mathrm{Si})$ are up to $\sum \sigma^{*} \sim 6$ higher and for $\sum \sigma^{*}>6$ lower than the frequencies for their carbon analogues $(M=C)$. The latter situation could be expected on the basis of the electronegativities of C and Si atoms or of the inductive effects of $R R^{\prime} R^{\prime \prime} \mathrm{C}$ and RR'R"Si-groups.

The fact that the lines in the v^{77} vs $\sum \sigma_{\mathrm{R}, \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}}^{*}$ plot for $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{MCH}_{2} \mathrm{Cl}(\mathrm{M}=$ $=\mathrm{C}, \mathrm{Si}$) bisect one another differentiates α-carbofunctional organosilicon chlorides from α-carbofunctional organogermanium and organotin chlorides, the ${ }^{35} \mathrm{ClNQR}$ frequency of which is always higher than that of the respective carbon derivatives ${ }^{4}$. This arises from the fact that the inductive effect is transferred through $-\mathrm{CH}_{2} \mathrm{Ge} \equiv$ and $-\mathrm{CH}_{2} \mathrm{Sn} \equiv$ groups very similarly as through $-\mathrm{CH}_{2} \mathrm{C} \equiv$ groups. (ref. ${ }^{4}$).

The ϱ value of the equation $v^{77}=\nu_{0}+\varrho \sum \sigma^{*}$ for $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{SiCH}_{2} \mathrm{Cl}$ (Table II) is somewhat lower than the value for $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{SiCl}\left(\varrho=0.404\right.$, ref. $\left.{ }^{11}\right)$. This can be expected as a result of the insulating effect of the methylene group. This effect is, however, significantly decreased compared to the carbon derivatives. This can be seen from the ratio of the values obtained from the equations $v^{77}=v_{0}+\varrho \sum \sigma^{*}$ for $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{SiCH}_{2} \mathrm{Cl}$ and $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{SiCl}\left(\mathrm{ref} .{ }^{12}\right)(z=0.73)$ and from the ratio of the values obtained from the equations $v^{77}=v_{0}+\varrho \sum \sigma^{*}$ for $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{CCH}_{2} \mathrm{Cl}$ and $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{CCl}$ (ref. ${ }^{12}$) $(z=0.53)$.

Table II
Parameters of Correlation Equations $v^{77}=v_{0}+e \Sigma \sigma^{*}$ for $\mathrm{R} \mathrm{R}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{M}\left(\mathrm{CH}_{3-n} \mathrm{Cl}_{n}\right)(n=1-3$; $\mathrm{M}=\mathrm{C}, \mathrm{Si}$)

n	$\mathrm{M}=\mathrm{C}$				$\mathrm{M}=\mathrm{Si}$			
	v_{0}	ϱ	r	s	ν_{0}	ϱ	r	s
1	32.039	0.594	0.964	0.223	34.053	0.308	0.981	0.188
2	35.062	$0 \cdot 409$	0.988	0.206	35.279	0.279	0.999	0.016
3	37.529	$0 \cdot 408$	0.987	$0 \cdot 193$	37.586	$0 \cdot 166$	0.950	0.211

The ${ }^{35} \mathrm{Cl}-\mathrm{NQR}$ frequencies for the series $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{SiCHCl}_{2}$ and $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{SiCCl}_{3}$ can be also satisfactorily correlated with $\sum \sigma_{\mathrm{R}, \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}}^{*}$ Taft values (Table II). Having at present at our disposal only limited number of such data (Tables III and IV), we must, however, admit that these correlations are less accurate and may serve only for preliminary information. The slopes of the v^{77} vs $\sum \sigma_{\mathrm{R}, \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}}^{*}$ plots for the compounds $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{SiCH}_{3-n} \mathrm{Cl}_{n}$ decrease with increasing n, in agreement with the sequence of the slopes when going from $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{CCl}$ to RCCl_{3} via RRCCl_{2} (ref. ${ }^{11}$). As one can expect, the inductive effect transfer from the substituents attached to the silicon decreases when going from $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{SiCH}_{2} \mathrm{Cl}$ to $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{SiCHCl}_{2}$. In the case of $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{SiCHCl}_{2}$ and $\mathrm{RR}^{\prime} \mathrm{R}^{\prime} \mathrm{SiCCl}_{3}$ the inductive effect is transferred to about the

Table III
${ }^{35} \mathrm{Cl}-\mathrm{NQR}$ Frequencies of $\mathrm{RR}^{\prime} \mathbf{R}^{\prime \prime} \mathrm{SiCHCl}_{2}$ at $77^{\circ} \mathrm{K}\left(\nu^{77}\right)$ and $\sum \sigma^{*}$ Values for Groups $\mathbf{R}, \mathrm{R}^{\prime}, \mathbf{R}^{\prime \prime}$

n	$\mathbf{R}, \mathbf{R}^{\prime}, \mathbf{R}^{\prime \prime}$	v^{77}, MH	$\sum \sigma^{*}$	n	$\mathbf{R}, \mathbf{R}^{\prime}, \mathbf{R}^{\prime \prime}$	v^{77}, MH	$\sum \sigma^{*}$
1^{a}	$\mathrm{Cl}, \mathrm{Cl}, \mathrm{Cl}$	$38 \cdot 160$	8.7	3^{c}	$\mathrm{Cl}, \mathrm{Cl}, \mathrm{CH}_{3}$	37.084	$5 \cdot 8$
		37.240				36.752	
		19.963				18.748	
		19.871		$4^{\text {b }}$	$\mathrm{CH}_{3}, \mathrm{CH}_{3}, \mathrm{CH}_{3}$	35.539	0.0
		$19 \cdot 699$				35.379	
$2^{\text {b }}$	$\mathrm{Cl}, \mathrm{Cl}, \mathrm{C}_{6} \mathrm{H}_{5}$	37.060	6.4			34.903	
				5	$\mathrm{CH}_{3}, \mathrm{CH}_{3}, \mathrm{Cl}$	37.083	$2 \cdot 9$
						36.745	

${ }^{a}$ The earlier reported ${ }^{9}$ NQR frequencies $v^{77}=38 \cdot 171,37 \cdot 240$ and $19 \cdot 75 \mathrm{MHz} .{ }^{b}{ }^{\text {cff. ref. }}{ }^{10}$. ${ }^{c}$ The earlier reported ${ }^{9,10} \mathrm{NQR}$ frequencies $v^{77}=36.76$ and 18.74 MHz .

Table IV
Average ${ }^{35} \mathrm{Cl}-\mathrm{NQR}$ Frequencies for $\mathbf{R} \mathrm{R}^{\prime} \mathbf{R}^{\prime \prime} \mathrm{SiCCl}_{3}$ at $77^{\circ} \mathrm{K}\left(\nu^{77}\right)$ and $\sum \sigma^{*}$ Values for Groups $\mathrm{R}, \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}$

n	$\mathrm{R}, \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}$	v^{77}, MHz	$\sum \sigma^{*}$
	$\mathrm{Cl}, \mathrm{Cl}, \mathrm{Cl}$	$39 \cdot 02$	$8 \cdot 7$
2	$\mathrm{Cl}, \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	$38 \cdot 88$	$6 \cdot 0$
3	$\mathrm{Cl}, \mathrm{Cl}, \mathrm{C}_{6} \mathrm{H}_{5}$	$38 \cdot 55$	$6 \cdot 4$
4	$\mathrm{OC}_{2} \mathrm{H}_{5}, \mathrm{OC}_{2} \mathrm{H}_{5}, \mathrm{CCl}_{3}$	$38 \cdot 29$	$5 \cdot 4$
5	$\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{2} \mathrm{H}_{5}$	$37 \cdot 54$	$-0 \cdot 3$

same extent. This can be explained by saturation effect ${ }^{1}$. The transmission of the inductive effect of the groups R to the chlorine atom of $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{SiCH}_{3-n} \mathrm{Cl}_{n}$ is always significantly lower compared to the respective carbon derivatives, $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{CCH}_{3-n} \mathrm{Cl}_{n}$ (Fig. 1, Table II). The lines of the v^{77} vs $\sum \sigma_{\mathrm{R}, \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}}^{*}$ plot for both $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{MCHCl}_{2}$ and $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{MCCl}_{3}(\mathrm{M}=\mathrm{C}, \mathrm{Si})$ bisect one another at the lower $\sum \sigma^{*}$ values than those for the compounds $\mathrm{R}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{MCH}_{2} \mathrm{Cl}(\mathrm{M}=\mathrm{C}$, Si$)$.

The point on $\sum \sigma^{*}$ scale at which the α-effect begins to be clearly manifested thus shifts toward lower $\sum \sigma^{*}$ values for $\mathrm{R}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{SiCH}_{3-n} \mathrm{Cl}_{n}$ when n increases.

Fig. 1
The ${ }^{35} \mathrm{Cl}-\mathrm{NQR}$ Frequency (ν^{77}) vs $\sum \sigma^{*}$ Plot for $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{CCH}_{2} \mathrm{Cl}$ (a), $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{SiCH}_{2} \mathrm{Cl}$ (b), $\mathrm{RR}^{\prime} \mathbf{R}^{\prime \prime} \mathrm{SiCHCl}_{2}(c), \mathrm{RR}^{\prime} \mathbf{R}^{\prime \prime} \mathrm{CCHCl}_{2}(d), \mathrm{RR}^{\prime} \mathbf{R}^{\prime \prime} \mathrm{SiCCl}_{3}($ e $)$ and $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{CCCl}_{3}(f)$

Correlation lines have been derived from the appropriate equations, parameters of which are included in Table II. The numbering of the points corresponds to the numbering of compounds in Tables I, III, and IV. For compounds $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{CCHCl}_{2}$ and $\mathrm{RR}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{CCCl}_{3}$ the points are numbered as follows:

Correlation d. $\mathrm{R}, \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}=\mathrm{F}, \mathrm{F}, \mathrm{F}$ (1); $\mathrm{Cl}, \mathrm{Cl}, \mathrm{Cl}(2) ; \mathrm{Cl}, \mathrm{Cl}, \mathrm{CCl}_{3}(3) ; \mathrm{H}, \mathrm{Cl}, \mathrm{Cl}(4) ; \mathrm{H}, \mathrm{Cl}, \mathrm{CHCl}_{2}$ (5); $\mathrm{H}, \mathrm{H}, \mathrm{CCl}_{3}$ (6); $\mathrm{H}, \mathrm{H}, \mathrm{CF}_{3}$ (7); $\mathrm{H}, \mathrm{OC}_{2} \mathrm{H}_{5}, \mathrm{OC}_{2} \mathrm{H}_{5}$ (8); H, H, $\mathrm{CH}_{2} \mathrm{Br}$ (9); H, H, H (10); $\mathrm{H}, \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{5}$ (11).
Correlation $f . \mathrm{R}, \mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}=\mathrm{Cl}, \mathrm{Cl}, \mathrm{CHCl}_{2}$ (1); $\mathrm{CCl}_{3}, \mathrm{CCl}_{3}, \mathrm{CCl}_{3}$ (2); $\mathrm{Cl}, \mathrm{Cl}, \mathrm{CCl}_{3}(3) ; \mathrm{Cl}, \mathrm{Cl}$, Cl (4); $\mathrm{H}, \mathrm{Cl}, \mathrm{CCl}_{3}(5) ; \mathrm{H}, \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}$ (6); $\mathrm{H}, \mathrm{H}, \mathrm{Cl}$ (7); $\mathrm{H}, \mathrm{OH}, \mathrm{OH}(8) ; \mathrm{H}, \mathrm{OH}, \mathrm{OC}_{2} \mathrm{H}_{5}$ (9); $\mathrm{H}, \mathrm{H}, \mathrm{CHCl}_{2}$ (10); $\mathrm{H}, \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}$ (11); $\mathrm{H}, \mathrm{H}, \mathrm{H}$ (12); $\mathrm{H}, \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{5}$ (13).

REFERENCES

1. Feshin V. P., Voronkov M. G.: Dokl. Akad. Nauk SSSR 209, 400 (1973).
2. Chvalovsk' V.: Plenary Lecture Presented on IVth Int. Symp, on Organosilicon Chemistry, Moscow 1975.
3. Steward O. W., Pierce O. R.: J. Amer. Chem. Soc. 83, 4932 (1961).
4. Voronkoy M. G., Feshin V. P., Mironov V. F., Mikhailants S. A., Gar T. K.: Zh. Obshch. Khim. 41, 2211 (1971).
5. Pola J., Schraml J., Chvalovský V.: This Journal 38, 3158 (1973).
6. Bažant V., Chvalovský V., Rathouský J.: Organosilicon Compounds, Vol. 2. Published by Nakladatelství ČSAV, Prague 1965.
7. Bažant V., Chvalovský V., Rathouský J.: Organosilicon Compounds, Vol. 4. Publication of the Institute of Chemical Process Fundamentals of the Czech. Acad. Sci., Prague 1973.
8. Zhdanov Yu. A., Minkin V. I.: Korrelatsionnyi Analiz v Organicheskoi Khimii. Izd. Rostovskogo Universiteta, Rostov 1966.
9. Voronkov M. G., Feshin V. P., Volkov A. N., Khubyakova A. N., Berestennikov N. I., Nikitin P. A.: Teor. Eksp. Khim. 10, 538 (1974).
10. Biryukov I. P., Voronkov M. G., Safin I. A.: Izy. Akad. Nauk Latv. SSR, Ser: Khim. 1966, 638.
11. Biryukov I. P., Voronkov M. G.: Izv. Akad. Nauk Latv. SSR, 10, 38 (1966).
12. Semin G. K., Babushkina T. A., Jakobson G. G.: Primenenie Yadernogo Kvadrupolnogo Rezonansa v Khimii, Chapter 6. Khimia, Moscow 1972.
[^1]
[^0]: ${ }^{a}$ Taft σ^{*} constants have been calculated from the relation $\sigma^{*}=6 \cdot 23 \sigma_{I}$ where σ_{I} constants were determined ${ }^{8}$ from $\mathrm{p} K$'s of α-substituted p-toluic acids. ${ }^{b}$ For the correlation equation see ${ }^{9}$. ${ }^{c}$ The same value of frequency was found in ${ }^{10} .{ }^{d} c f$. ref. ${ }^{4}$.

[^1]: Translated by J. Hetflejs.

